metal-organic compounds

 $\mu = 0.68 \text{ mm}^{-1}$ T = 292 (2) K

 $R_{\rm int} = 0.044$

 $0.35 \times 0.30 \times 0.28 \text{ mm}$

37956 measured reflections

9041 independent reflections 6965 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2-Amino-4,5-dimethylbenzenesulfonato- κN)aquabis(triphenylphosphine- κP)silver(I)

Xian-Wu Dong,^a* Fa-Yuan Wu^b and Yu-Jie Li^a

^aJiLin Agricultural Science and Technology College, People's Republic of China, and ^bSchool of Heilongjiang Agricultural College of Vocational Technology, People's Republic of China

Correspondence e-mail: hljwuhua@163.com

Received 24 October 2007; accepted 26 October 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.004 Å; R factor = 0.034; wR factor = 0.094; data-to-parameter ratio = 18.4.

The title compound, $[Ag(C_8H_{10}NO_3S)(C_{18}H_{15}P)_2(H_2O)]$, has a mononuclear structure, where the Ag^I cation is fourcoordinated by two triphenylphosphine ligands, one water molecule and the N atom of a 2-amino-4,5-dimethylbenzenesulfonate anion in a distorted tetrahedral AgP2NO arrangement. A network of N-H···O and O-H···O hydrogen bonds helps to consolidate the packing.

Related literature

For a study of a related silver sulfonate, see: Li et al. (2007).

Experimental

Crystal data

$[Ag(C_8H_{10}NO_3S)(C_{18}H_{15}P)_2(H_2O)]$	a = 24.872 (5) Å
$M_r = 850.66$	b = 14.634 (3) Å
Monoclinic, $P2_1/c$	c = 11.010 (2) Å

$\beta = 94.70 \ (3)^{\circ}$
V = 3994.0 (14) Å
Z = 4
Mo $K\alpha$ radiation

Data collection

Rigaku R-AXIS RAPID CCD	
diffractometer	
Absorption correction: multi-scan	
(ABSCOR; Higashi, 1995)	
$T_{\min} = 0.785, T_{\max} = 0.836$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	H atoms treated by a mixture of
$wR(F^2) = 0.094$	independent and constrained
S = 1.08	refinement
9041 reflections	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
492 parameters	$\Delta \rho_{\rm min} = -0.59 \text{ e} \text{ Å}^{-3}$
4 restraints	

Table 1

Selected geometric parameters (Å, °).

Ag1-P2	2.4492 (7)	Ag1-O1W	2.464 (2)
Ag1-P1	2.4637 (8)	Ag1-N1	2.469 (2)
P2-Ag1-P1	130.79 (2)	P2-Ag1-N1	114.57 (6)
P2-Ag1-O1W	105.12 (6)	P1-Ag1-N1	106.45 (5)
P1-Ag1-O1W	104.71 (6)	O1W-Ag1-N1	84.53 (8)

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W-H1B\cdots O2^{i}$	0.83 (3)	1.97 (3)	2.797 (3)	173 (3)
$O1W - H1A \cdots O3$	0.89 (3)	2.10 (3)	2.825 (4)	137 (3)
$N1 - H1C \cdot \cdot \cdot O1^{ii}$	0.92(3)	2.09 (3)	2.972 (3)	159 (2)
$N1 - H1D \cdots O3$	0.83 (3)	2.26 (3)	2.875 (3)	131 (3)

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

The authors thank JiLin Agricultural Science and Technology College (China) for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2160).

References

- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Li, Y.-J., Li, S.-H. & Dong, X.-W. (2007). Acta Cryst. E63, m2695.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, m2885 [doi:10.1107/S1600536807053524]

(2-Amino-4,5-dimethylbenzenesulfonato-KN)aquabis(triphenylphosphine-KP)silver(I)

X.-W. Dong, F.-Y. Wu and Y.-J. Li

Comment

In the title compound, (I), one water molecule, one 2-amino-4,5-dimethylbenzenesulfonate (L) anion and two triphenylphosphine ligands are coordinated to the metal, resulting in a distorted tetrahedral geometry for Ag (Fig. 1, Table 1). The Ag—O_{water} and Ag—N distances are different from those of a related compound (Li *et al.*, 2007).

Here, the coordination ability of the amine group of L is evidently stronger than that of the sulfonate group and the latter group does not coordinate to the Ag ion. In the crystal structure of (I), adjacent molecules are interconnected by strong O—H···O and N—H···O hydrogen bonds (Table 2) to form a one-dimensional supramolecular structure (Fig. 2).

Experimental

An aqueous solution (10 ml) of 2-amino-4,5-dimethylbenzenesulfonic acid (0.1005 g, 0.5 mmol) was added to solid Ag_2CO_3 (0.069 g, 0.25 mmol) and stirred for several minutes until no further CO_2 was given off; triphenylphosphine (0.113 g, 0.5 mmol) in acetonitrile (10 ml) was then added and a white precipitate formed. The precipitate was dissolved by dropwise addition of an aqueous solution of NH₃ (14 *M*). Colourless blocks of (I) were obtained by evaporation of the solution over several days at room temperature.

Refinement

All H atoms on C atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$. The water H atoms were located in a difference Fourier map, and were refined with distance restraints of O—H = 0.85 (1) Å. The amino H atoms were located in a difference Fourier map and refined with $U_{iso}(H) = 1.2U_{eq}(N)$.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids. All H atoms are omitted for clarity.

Fig. 2. One-dimensional supramolecular structure of (I), formed through hydrogen-bonding (dashed lines) interactions. The H atoms not involved in hydrogen bonding have been omitted.

(2-Amino-4,5-dimethylbenzenesulfonato-κN)aquabis(triphenylphosphine- κP)silver(I)

Crystal data

[Ag(C₈H₁₀NO₃S)(C₁₈H₁₅P)₂(H₂O)] $M_r = 850.66$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 24.872 (5) Å b = 14.634 (3) Å c = 11.010 (2) Å $\beta = 94.70$ (3)° V = 3994.0 (14) Å³ Z = 4 $F_{000} = 1752$ $D_x = 1.415 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9041 reflections $\theta = 3.2-27.4^{\circ}$ $\mu = 0.68 \text{ mm}^{-1}$ T = 292 (2) KBlock, colourless $0.35 \times 0.30 \times 0.28 \text{ mm}$

Data collection

Rigaku R-AXIS RAPID CCD diffractometer	9041 independent reflections
Radiation source: fine-focus sealed tube	6965 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.044$
Detector resolution: 10.0 pixels mm ⁻¹	$\theta_{\text{max}} = 27.4^{\circ}$
T = 292(2) K	$\theta_{\min} = 3.2^{\circ}$
ω scans	$h = -32 \rightarrow 31$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -18 \rightarrow 18$
$T_{\min} = 0.785, T_{\max} = 0.836$	$l = -13 \rightarrow 14$
37956 measured reflections	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$

 $wR(F^2) = 0.094$

S = 1.08

9041 reflections

492 parameters

4 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0476P)^2 + 0.5293P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.30$ e Å⁻³ $\Delta\rho_{min} = -0.59$ e Å⁻³ Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}*/U_{\rm eq}$ \boldsymbol{Z} х y 0.03753(7)Ag1 0.737422 (7) 0.536786 (13) 0.982619 (17) C1 0.85593 (9) 0.41493 (17) 1.1156 (2) 0.0369 (5) C2 0.90991 (10) 0.3921 (2) 1.1126 (2) 0.0555 (8) H2 0.9238 0.3801 1.0383 0.067* C3 0.94317 (13) 0.3872 (3) 1.2191 (3) 0.0734 (10) H3 0.9793 0.3714 1.2167 0.088* C4 0.92291 (13) 0.0674 (9) 0.4054(3)1.3277 (3) H4 0.9455 0.4018 1.3992 0.081* C5 0.87000(13) 0.4288(2)1.3333 (3) 0.0567 (8) H5 0.8565 0.4409 1.4080 0.068* C6 0.43426 (19) 0.0432 (6) 0.83653 (11) 1.2262 (2) H6 0.4512 1.2293 0.052* 0.8006 C7 0.78305 (9) 0.30617 (17) 0.9581 (2) 0.0376 (5) C8 0.79251 (12) 0.2379 (2) 1.0447 (3) 0.0504 (7) 0.2499 H8 0.8149 1.1148 0.061* C9 0.76929 (13) 0.1524 (2) 1.0287 (3) 0.0643 (9) H9 0.1077 0.077* 0.7757 1.0881 C10 0.73683 (12) 0.1338(2)0.9248 (3) 0.0621 (8) H10 0.7213 0.0763 0.9134 0.074* 0.0630 (9) C11 0.72722 (12) 0.2005 (2) 0.8372 (3) H11 0.7057 0.1875 0.7662 0.076* 0.74945 (10) C12 0.2866 (2) 0.8547 (3) 0.0494 (7) H12 0.7418 0.3318 0.7966 0.059* 0.43810 (19) C13 0.85297 (9) 0.8548(2) 0.0379(6) C14 0.87784 (10) 0.3656(2) 0.7996 (2) 0.0489(7) H14 0.3058 0.8235 0.059* 0.8717 C15 0.91199 (12) 0.3835 (3) 0.7084 (3) 0.0665 (9) H15 0.3353 0.080* 0.9286 0.6711 C16 0.92135 (14) 0.4717 (3) 0.6729(3) 0.0714 (11) H16 0.9442 0.4827 0.6117 0.086* C17 0.89712 (14) 0.5441 (3) 0.7275 (3) 0.0691 (10) H17 0.083* 0.9037 0.6037 0.7036 C18 0.86258 (12) 0.5271 (2) 0.8190 (3) 0.0518(7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H18	0.8460	0.5756	0.8558	0.062*
C19	0.61800 (9)	0.42070 (18)	1.0728 (2)	0.0386 (5)
C20	0.63163 (12)	0.3347 (2)	1.0330 (3)	0.0531 (7)
H20	0.6499	0.3288	0.9630	0.064*
C21	0.61829 (15)	0.2575 (2)	1.0960 (4)	0.0718 (10)
H21	0.6271	0.2000	1.0678	0.086*
C22	0.59193 (14)	0.2658 (3)	1.2007 (3)	0.0731 (10)
H22	0.5832	0.2139	1.2437	0.088*
C23	0.57876 (13)	0.3495 (3)	1.2410 (3)	0.0699 (10)
H23	0.5609	0.3546	1.3116	0.084*
C24	0.59156 (11)	0.4279 (2)	1.1782 (3)	0.0536 (7)
H24	0.5824	0.4851	1.2069	0.064*
C25	0.60430 (9)	0.49905 (18)	0.8353 (2)	0.0376 (5)
C26	0.63227 (12)	0.5162 (2)	0.7327 (3)	0.0518 (7)
H26	0.6674	0.5385	0.7426	0.062*
C27	0.60844 (15)	0.5006 (3)	0.6170 (3)	0.0666 (9)
H27	0.6276	0.5124	0.5496	0.080*
C28	0.55659 (14)	0.4678 (2)	0.6009 (3)	0.0663 (9)
H28	0.5406	0.4570	0.5228	0.080*
C29	0.52824 (12)	0.4509 (2)	0.7018 (3)	0.0605 (9)
H29	0.4930	0.4292	0.6912	0.073*
C30	0.55190 (11)	0.46624 (19)	0.8185 (3)	0.0491 (7)
H30	0.5326	0.4545	0.8856	0.059*
C31	0.60500 (9)	0.61544 (17)	1.0500 (2)	0.0348 (5)
C32	0.55896 (10)	0.65660 (19)	0.9950 (3)	0.0466 (6)
H32	0.5433	0.6341	0.9214	0.056*
C33	0.53621 (12)	0.7313 (2)	1.0495 (3)	0.0606 (8)
H33	0.5056	0.7589	1.0118	0.073*
C34	0.55873 (12)	0.7648 (2)	1.1591 (3)	0.0659 (9)
H34	0.5432	0.8146	1.1953	0.079*
C35	0.60383 (12)	0.7248 (2)	1.2143 (3)	0.0591 (8)
H35	0.6189	0.7475	1.2882	0.071*
C36	0.62738 (10)	0.6505 (2)	1.1611 (2)	0.0448 (6)
H36	0.6582	0.6238	1.1995	0.054*
C37	0.80874 (10)	0.79236 (17)	0.9918 (2)	0.0370 (5)
C38	0.85665 (11)	0.82206 (19)	0.9475 (2)	0.0459 (6)
H38	0.8557	0.8732	0.8972	0.055*
C39	0.90552 (11)	0.7785 (2)	0.9752 (3)	0.0511 (7)
C40	0.90660 (10)	0.7015 (2)	1.0502 (3)	0.0494 (7)
C41	0.85908 (10)	0.67250 (19)	1.0955 (2)	0.0434 (6)
H41	0.8603	0.6226	1.1480	0.052*
C42	0.80932 (10)	0.71503 (17)	1.0657 (2)	0.0350 (5)
C43	0.95591 (13)	0.8125 (3)	0.9209 (4)	0.0835 (12)
H43A	0.9864	0.8053	0.9793	0.125*
H43B	0.9516	0.8759	0.8997	0.125*
H43C	0.9616	0.7777	0.8491	0.125*
C44	0.95793 (12)	0.6482 (3)	1.0810 (3)	0.0760 (10)
H44A	0.9851	0.6882	1.1182	0.114*
H44B	0.9702	0.6228	1.0079	0.114*

H44C	0.9511	0.5998	1.1366	0.114*
N1	0.76224 (8)	0.67411 (15)	1.1049 (2)	0.0376 (5)
01	0.75906 (9)	0.91154 (14)	0.84892 (17)	0.0573 (5)
O2	0.73943 (10)	0.91015 (17)	1.05962 (18)	0.0751 (7)
O3	0.70682 (8)	0.78944 (15)	0.9241 (2)	0.0741 (7)
O1W	0.74902 (10)	0.63686 (16)	0.80672 (19)	0.0616 (6)
S1	0.74872 (3)	0.85648 (5)	0.95299 (6)	0.04396 (16)
P1	0.63905 (2)	0.51895 (4)	0.98561 (6)	0.03284 (14)
P2	0.80913 (2)	0.42236 (4)	0.97888 (6)	0.03333 (14)
H1A	0.7255 (11)	0.683 (2)	0.806 (3)	0.050*
H1B	0.7489 (11)	0.624 (2)	0.733 (2)	0.050*
H1C	0.7682 (10)	0.6577 (19)	1.185 (2)	0.050*
H1D	0.7351 (11)	0.7059 (19)	1.090 (3)	0.050*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Agl	0.03204 (11)	0.03472 (11)	0.04610 (12)	0.00212 (7)	0.00494 (8)	-0.00024 (8)
C1	0.0379 (13)	0.0346 (14)	0.0382 (13)	0.0038 (10)	0.0027 (10)	-0.0028 (11)
C2	0.0441 (15)	0.081 (2)	0.0407 (15)	0.0188 (14)	-0.0007 (12)	-0.0118 (15)
C3	0.0502 (18)	0.099 (3)	0.068 (2)	0.0217 (18)	-0.0113 (15)	-0.016 (2)
C4	0.076 (2)	0.079 (3)	0.0433 (18)	0.0106 (18)	-0.0200 (15)	-0.0060 (17)
C5	0.072 (2)	0.063 (2)	0.0346 (15)	0.0018 (16)	0.0026 (13)	-0.0038 (14)
C6	0.0489 (15)	0.0417 (15)	0.0397 (14)	0.0025 (12)	0.0073 (11)	-0.0018 (12)
C7	0.0335 (12)	0.0373 (14)	0.0429 (14)	0.0049 (10)	0.0083 (10)	-0.0022 (11)
C8	0.0662 (18)	0.0432 (17)	0.0416 (15)	-0.0003 (13)	0.0030 (13)	0.0011 (13)
С9	0.087 (2)	0.0461 (19)	0.061 (2)	-0.0015 (16)	0.0143 (18)	0.0021 (16)
C10	0.0621 (19)	0.0438 (18)	0.083 (2)	-0.0082 (14)	0.0197 (16)	-0.0161 (17)
C11	0.0484 (17)	0.060 (2)	0.079 (2)	-0.0008 (14)	-0.0019 (15)	-0.0253 (18)
C12	0.0457 (15)	0.0504 (18)	0.0511 (17)	0.0022 (12)	-0.0033 (12)	-0.0030 (14)
C13	0.0360 (12)	0.0507 (16)	0.0271 (12)	0.0019 (11)	0.0029 (9)	-0.0043 (11)
C14	0.0441 (14)	0.0575 (19)	0.0460 (15)	0.0052 (13)	0.0080 (12)	-0.0099 (14)
C15	0.0505 (17)	0.089 (3)	0.063 (2)	-0.0007 (17)	0.0243 (15)	-0.0230 (19)
C16	0.064 (2)	0.110 (3)	0.0437 (18)	-0.024 (2)	0.0216 (15)	-0.0125 (19)
C17	0.072 (2)	0.078 (3)	0.060 (2)	-0.0199 (18)	0.0207 (17)	0.0101 (18)
C18	0.0610 (18)	0.0531 (19)	0.0427 (16)	-0.0041 (13)	0.0132 (13)	0.0032 (13)
C19	0.0343 (12)	0.0359 (14)	0.0456 (14)	-0.0023 (10)	0.0025 (10)	0.0039 (11)
C20	0.0633 (18)	0.0420 (17)	0.0540 (17)	-0.0009 (13)	0.0039 (14)	0.0010 (14)
C21	0.088 (2)	0.0345 (17)	0.092 (3)	-0.0097 (16)	-0.003 (2)	0.0081 (17)
C22	0.080 (2)	0.064 (2)	0.073 (2)	-0.0299 (19)	-0.0077 (18)	0.030 (2)
C23	0.071 (2)	0.077 (3)	0.064 (2)	-0.0171 (18)	0.0204 (16)	0.0200 (19)
C24	0.0536 (17)	0.0521 (18)	0.0572 (18)	-0.0026 (14)	0.0177 (14)	0.0082 (14)
C25	0.0378 (13)	0.0348 (13)	0.0396 (14)	0.0040 (10)	-0.0006 (10)	-0.0052 (11)
C26	0.0555 (17)	0.0542 (19)	0.0459 (17)	-0.0013 (14)	0.0054 (13)	-0.0024 (14)
C27	0.086 (2)	0.073 (2)	0.0409 (18)	0.0117 (19)	0.0054 (16)	-0.0024 (16)
C28	0.073 (2)	0.068 (2)	0.055 (2)	0.0264 (17)	-0.0168 (16)	-0.0166 (17)
C29	0.0470 (16)	0.059 (2)	0.072 (2)	0.0107 (13)	-0.0181 (15)	-0.0200 (17)
C30	0.0404 (14)	0.0484 (17)	0.0579 (18)	0.0030 (12)	0.0008 (12)	-0.0076 (14)

C31	0.0322 (12)	0.0338 (13)	0.0388 (13)	-0.0014 (9)	0.0059 (10)	-0.0009 (10)
C32	0.0438 (14)	0.0456 (16)	0.0498 (16)	0.0063 (12)	0.0004 (11)	-0.0014 (13)
C33	0.0543 (17)	0.055 (2)	0.071 (2)	0.0203 (14)	-0.0015 (15)	-0.0078 (16)
C34	0.0576 (18)	0.054 (2)	0.087 (2)	0.0116 (15)	0.0106 (17)	-0.0243 (18)
C35	0.0485 (16)	0.061 (2)	0.067 (2)	-0.0026 (14)	0.0052 (14)	-0.0297 (17)
C36	0.0359 (13)	0.0506 (17)	0.0475 (15)	0.0019 (11)	0.0018 (11)	-0.0094 (13)
C37	0.0465 (14)	0.0320 (14)	0.0329 (13)	-0.0073 (10)	0.0058 (10)	-0.0023 (10)
C38	0.0552 (16)	0.0417 (16)	0.0421 (15)	-0.0142 (12)	0.0119 (12)	-0.0016 (12)
C39	0.0449 (15)	0.062 (2)	0.0474 (16)	-0.0157 (13)	0.0090 (12)	-0.0057 (14)
C40	0.0406 (14)	0.062 (2)	0.0458 (16)	-0.0024 (12)	0.0022 (11)	-0.0077 (14)
C41	0.0492 (15)	0.0409 (15)	0.0401 (14)	0.0001 (12)	0.0033 (11)	0.0011 (12)
C42	0.0429 (13)	0.0342 (13)	0.0283 (12)	-0.0069 (10)	0.0053 (9)	-0.0045 (10)
C43	0.059 (2)	0.108 (3)	0.086 (3)	-0.024 (2)	0.0226 (18)	0.007 (2)
C44	0.0468 (17)	0.104 (3)	0.076 (2)	0.0129 (18)	-0.0003 (15)	0.004 (2)
N1	0.0402 (11)	0.0375 (12)	0.0358 (11)	-0.0019 (9)	0.0067 (9)	-0.0001 (9)
01	0.0845 (14)	0.0471 (12)	0.0418 (11)	0.0087 (10)	0.0135 (10)	0.0097 (9)
O2	0.1054 (18)	0.0802 (18)	0.0420 (12)	0.0395 (14)	0.0208 (12)	-0.0009 (11)
O3	0.0522 (12)	0.0569 (15)	0.1095 (19)	-0.0024 (10)	-0.0162 (12)	0.0196 (14)
O1W	0.0907 (16)	0.0542 (14)	0.0399 (11)	-0.0020 (11)	0.0049 (11)	0.0082 (11)
S1	0.0561 (4)	0.0383 (4)	0.0383 (3)	0.0045 (3)	0.0090 (3)	0.0036 (3)
P1	0.0293 (3)	0.0332 (3)	0.0363 (3)	0.0005 (2)	0.0042 (2)	0.0002 (3)
P2	0.0323 (3)	0.0352 (3)	0.0329 (3)	0.0048 (2)	0.0053 (2)	-0.0005 (3)

Geometric parameters (Å, °)

Ag1—P1 2.4637	$\begin{array}{c} (8) \\ (2) \\$	0 1	387 (4)
	(2) $(25-0)$		
Ag1—01W 2.464 (2, 020 02	26 1	.397 (4)
Ag1—N1 2.469 (2) C25—P1	1	.827 (3)
C1—C6 1.376 (3) C26—C2	.7 1	.379 (4)
C1—C2 1.387 (3) C26—H2	26 0	.930
C1—P2 1.829 (3) C27—C2	.8 1	.374 (5)
C2—C3 1.381 (4) C27—H2	27 0	.930
C2—H2 0.930	C28—C2	.9 1	.387 (5)
C3—C4 1.361 (4) C28—H2	28 0	.930
С3—Н3 0.930	C29—C3	0 1	.386 (4)
C4—C5 1.366 (4) C29—H2	29 0	.930
C4—H4 0.930	С30—Н.	30 0	.930
C5—C6 1.389 (4) C31—C3	2 1	.388 (3)
С5—Н5 0.930	C31—C3	6 1	.399 (3)
С6—Н6 0.930	C31—P1	1	.820 (2)
C7—C12 1.386 (4) C32—C3	3 1	.390 (4)
С7—С8 1.387 (4) C32—H3	32 0	.930
С7—Р2 1.828 (3) C33—C3	34 1	.378 (4)
C8—C9 1.383 (4) C33—H3	33 0	.930
С8—Н8 0.930	C34—C3	5 1	.363 (4)
C9—C10 1.373 (4) C34—H3	34 0	.930
С9—Н9 0.930	C35—C3	6 1	.387 (4)
C10—C11 1.379 (5) C35—H3	35 0	.930

C10—H10	0.930	С36—Н36	0.930
C11—C12	1.383 (4)	C37—C42	1.393 (3)
C11—H11	0.930	C37—C38	1.394 (3)
C12—H12	0.930	C37—S1	1.785 (3)
C13—C18	1.387 (4)	C38—C39	1.384 (4)
C13—C14	1.392 (4)	C38—H38	0.930
C13—P2	1.831 (2)	C39—C40	1.397 (4)
C14—C15	1.393 (4)	C39—C43	1.516 (4)
C14—H14	0.930	C40—C41	1.386 (4)
C15—C16	1.374 (5)	C40—C44	1.511 (4)
C15—H15	0.930	C41—C42	1.400 (3)
C16—C17	1.381 (5)	C41—H41	0.930
C16—H16	0.930	C42—N1	1.414 (3)
C17—C18	1.399 (4)	C43—H43A	0.960
С17—Н17	0.930	C43—H43B	0.960
C18—H18	0.930	C43—H43C	0.960
C19—C24	1.383 (4)	C44—H44A	0.960
C19—C20	1.385 (4)	C44—H44B	0.960
C19—P1	1.829 (3)	C44—H44C	0.960
C20—C21	1.380 (4)	N1—H1C	0.92 (3)
C20—H20	0.930	N1—H1D	0.83 (3)
C21—C22	1.377 (5)	O1—S1	1.4411 (19)
C21—H21	0.930	O2—S1	1.447 (2)
C22—C23	1.351 (5)	O3—S1	1.448 (2)
C22—H22	0.930	O1W—H1A	0.89 (3)
C23—C24	1.391 (4)	O1W—H1B	0.83 (3)
С23—Н23	0.930		
P2—Ag1—P1	130.79 (2)	С26—С27—Н27	119.8
P2—Ag1—O1W	105.12 (6)	C27—C28—C29	119.5 (3)
P1—Ag1—O1W	104.71 (6)	С27—С28—Н28	120.3
P2—Ag1—N1	114.57 (6)	C29—C28—H28	120.3
P1—Ag1—N1	106.45 (5)	C28—C29—C30	120.6 (3)
O1W—Ag1—N1	84.53 (8)	С28—С29—Н29	119.7
C6—C1—C2	118.8 (2)	С30—С29—Н29	119.7
C6—C1—P2	118.07 (19)	C29—C30—C25	120.1 (3)
C2—C1—P2	123.16 (19)	С29—С30—Н30	119.9
C3—C2—C1	120.4 (3)	С25—С30—Н30	119.9
С3—С2—Н2	119.8	C32—C31—C36	118.5 (2)
C1—C2—H2	119.8	C32—C31—P1	124.05 (19)
C4—C3—C2	119.8 (3)	C36—C31—P1	117.43 (18)
С4—С3—Н3	120.1	C31—C32—C33	120.2 (3)
С2—С3—Н3	120.1	С31—С32—Н32	119.9
C3—C4—C5	121.1 (3)	С33—С32—Н32	119.9
C3—C4—H4	119.5	C34—C33—C32	120.5 (3)
C5—C4—H4	119.5	С34—С33—Н33	119.8
C4—C5—C6	119.2 (3)	С32—С33—Н33	119.8
С4—С5—Н5	120.4	C35—C34—C33	119.9 (3)
С6—С5—Н5	120.4	С35—С34—Н34	120.1
C1—C6—C5	120.7 (3)	C33—C34—H34	120.1

С1—С6—Н6	119.7	C34—C35—C36	120.6 (3)
С5—С6—Н6	119.7	С34—С35—Н35	119.7
C12—C7—C8	118.2 (3)	С36—С35—Н35	119.7
C12—C7—P2	118.6 (2)	C35—C36—C31	120.3 (3)
C8—C7—P2	123.0 (2)	С35—С36—Н36	119.8
C9—C8—C7	121.2 (3)	С31—С36—Н36	119.8
С9—С8—Н8	119.4	C42—C37—C38	119.3 (2)
С7—С8—Н8	119.4	C42—C37—S1	122.34 (18)
C10—C9—C8	119.8 (3)	C38—C37—S1	118.3 (2)
С10—С9—Н9	120.1	C39—C38—C37	122.7 (3)
С8—С9—Н9	120.1	С39—С38—Н38	118.7
C9—C10—C11	119.9 (3)	С37—С38—Н38	118.7
С9—С10—Н10	120.1	C38—C39—C40	118.4 (2)
C11—C10—H10	120.1	C38—C39—C43	120.1 (3)
C10-C11-C12	120.2 (3)	C40—C39—C43	121.4 (3)
C10-C11-H11	119.9	C41—C40—C39	119.0 (3)
C12—C11—H11	119.9	C41—C40—C44	119.4 (3)
C11—C12—C7	120.7 (3)	C39—C40—C44	121.6 (3)
C11—C12—H12	119.7	C40—C41—C42	122.9 (3)
С7—С12—Н12	119.7	C40—C41—H41	118.6
C18—C13—C14	119.9 (2)	C42—C41—H41	118.6
C18—C13—P2	117.2 (2)	C37—C42—C41	117.7 (2)
C14—C13—P2	122.9 (2)	C37—C42—N1	123.6 (2)
C13—C14—C15	119.4 (3)	C41—C42—N1	118.6 (2)
C13—C14—H14	120.3	С39—С43—Н43А	109.5
C15—C14—H14	120.3	С39—С43—Н43В	109.5
C16—C15—C14	120.6 (3)	H43A—C43—H43B	109.5
C16—C15—H15	119.7	С39—С43—Н43С	109.5
C14—C15—H15	119.7	H43A—C43—H43C	109.5
C15—C16—C17	120.5 (3)	H43B—C43—H43C	109.5
С15—С16—Н16	119.8	C40—C44—H44A	109.5
С17—С16—Н16	119.8	C40—C44—H44B	109.5
C16—C17—C18	119.5 (3)	H44A—C44—H44B	109.5
С16—С17—Н17	120.2	C40—C44—H44C	109.5
С18—С17—Н17	120.2	H44A—C44—H44C	109.5
C13—C18—C17	120.1 (3)	H44B—C44—H44C	109.5
C13—C18—H18	119.9	C42—N1—Ag1	110.78 (15)
C17—C18—H18	119.9	C42—N1—H1C	109.5 (17)
C24—C19—C20	118.8 (3)	Ag1—N1—H1C	109.1 (18)
C24—C19—P1	123.8 (2)	C42—N1—H1D	113 (2)
C20-C19-P1	117.4 (2)	Ag1—N1—H1D	101 (2)
C21—C20—C19	120.6 (3)	H1C—N1—H1D	113 (3)
C21—C20—H20	119.7	Ag1—O1W—H1A	109.5 (19)
С19—С20—Н20	119.7	Ag1—O1W—H1B	130 (2)
C22—C21—C20	120.0 (3)	H1A—O1W—H1B	103 (3)
C22—C21—H21	120.0	O1—S1—O2	113.11 (14)
C20—C21—H21	120.0	O1—S1—O3	112.10 (14)
C23—C22—C21	119.9 (3)	O2—S1—O3	112.74 (16)
С23—С22—Н22	120.0	O1—S1—C37	106.49 (12)

C21—C22—H22	120.0	O2—S1—C37	106.09 (13)
C22—C23—C24	120.9 (3)	O3—S1—C37	105.62 (12)
С22—С23—Н23	119.5	C31—P1—C25	106.04 (11)
C24—C23—H23	119.5	C31—P1—C19	104.05 (12)
C19—C24—C23	119.8 (3)	C25—P1—C19	102.48 (12)
C19—C24—H24	120.1	C31—P1—Ag1	114.67 (8)
C23—C24—H24	120.1	C25—P1—Ag1	113.66 (8)
C30—C25—C26	118.7 (3)	C19—P1—Ag1	114.68 (8)
C30-C25-P1	123.0 (2)	C7—P2—C1	104.07 (12)
C26—C25—P1	118.3 (2)	C7—P2—C13	104.51 (11)
C27—C26—C25	120.8 (3)	C1—P2—C13	104.10 (11)
C27—C26—H26	119.6	C7—P2—Ag1	112.75 (8)
C25—C26—H26	119.6	C1—P2—Ag1	116.24 (8)
C28—C27—C26	120.3 (3)	C13—P2—Ag1	113.93 (9)
С28—С27—Н27	119.8	-	
C6—C1—C2—C3	1.3 (5)	C41—C42—N1—Ag1	-73.9 (2)
P2-C1-C2-C3	-179.6 (3)	P2—Ag1—N1—C42	55.17 (18)
C1—C2—C3—C4	-0.4 (6)	P1—Ag1—N1—C42	-152.72 (15)
C2—C3—C4—C5	-0.1 (6)	O1W—Ag1—N1—C42	-48.97 (17)
C3—C4—C5—C6	-0.2 (6)	C42—C37—S1—O1	-162.6 (2)
C2—C1—C6—C5	-1.6 (4)	C38—C37—S1—O1	18.4 (2)
P2-C1-C6-C5	179.3 (2)	C42—C37—S1—O2	76.7 (2)
C4—C5—C6—C1	1.1 (5)	C38—C37—S1—O2	-102.4 (2)
C12—C7—C8—C9	0.2 (4)	C42—C37—S1—O3	-43.2 (2)
P2-C7-C8-C9	176.0 (2)	C38—C37—S1—O3	137.7 (2)
C7—C8—C9—C10	0.9 (5)	C32—C31—P1—C25	5.3 (3)
C8—C9—C10—C11	-0.4 (5)	C36—C31—P1—C25	-173.9 (2)
C9—C10—C11—C12	-1.1 (5)	C32—C31—P1—C19	-102.4 (2)
C10—C11—C12—C7	2.2 (4)	C36—C31—P1—C19	78.4 (2)
C8—C7—C12—C11	-1.8 (4)	C32—C31—P1—Ag1	131.5 (2)
P2-C7-C12-C11	-177.7 (2)	C36—C31—P1—Ag1	-47.6 (2)
C18—C13—C14—C15	-0.3 (4)	C30—C25—P1—C31	-68.7 (3)
P2-C13-C14-C15	-178.0 (2)	C26—C25—P1—C31	112.4 (2)
C13—C14—C15—C16	0.2 (5)	C30-C25-P1-C19	40.1 (3)
C14—C15—C16—C17	0.2 (6)	C26—C25—P1—C19	-138.8 (2)
C15—C16—C17—C18	-0.4 (6)	C30—C25—P1—Ag1	164.4 (2)
C14—C13—C18—C17	0.1 (4)	C26—C25—P1—Ag1	-14.4 (3)
P2-C13-C18-C17	177.9 (2)	C24—C19—P1—C31	-11.7 (3)
C16—C17—C18—C13	0.3 (5)	C20—C19—P1—C31	171.2 (2)
C24—C19—C20—C21	1.1 (4)	C24—C19—P1—C25	-122.0 (2)
P1-C19-C20-C21	178.4 (2)	C20—C19—P1—C25	60.9 (2)
C19—C20—C21—C22	-1.0 (5)	C24—C19—P1—Ag1	114.4 (2)
C20—C21—C22—C23	0.6 (5)	C20—C19—P1—Ag1	-62.8 (2)
C21—C22—C23—C24	-0.2 (5)	P2—Ag1—P1—C31	155.69 (9)
C20—C19—C24—C23	-0.6 (4)	O1W—Ag1—P1—C31	-78.68 (11)
P1-C19-C24-C23	-177.7 (2)	N1—Ag1—P1—C31	9.87 (11)
C22—C23—C24—C19	0.2 (5)	P2—Ag1—P1—C25	-82.10 (10)
C30—C25—C26—C27	-0.3 (4)	O1W—Ag1—P1—C25	43.53 (11)
P1-C25-C26-C27	178.6 (3)	N1—Ag1—P1—C25	132.09 (11)
		-	

C25—C26—C27—C28	0.0 (5)	P2—Ag1—P1—C19	35.35 (10)
C26—C27—C28—C29	0.4 (5)	O1W—Ag1—P1—C19	160.98 (11)
C27—C28—C29—C30	-0.5 (5)	N1—Ag1—P1—C19	-110.47 (11)
C28—C29—C30—C25	0.3 (4)	C12—C7—P2—C1	-174.55 (19)
C26—C25—C30—C29	0.1 (4)	C8—C7—P2—C1	9.7 (2)
P1-C25-C30-C29	-178.7 (2)	C12—C7—P2—C13	-65.6 (2)
C36—C31—C32—C33	0.5 (4)	C8—C7—P2—C13	118.6 (2)
P1-C31-C32-C33	-178.7 (2)	C12—C7—P2—Ag1	58.6 (2)
C31—C32—C33—C34	-0.6 (5)	C8—C7—P2—Ag1	-117.1 (2)
C32—C33—C34—C35	0.4 (5)	C6—C1—P2—C7	-92.8 (2)
C33—C34—C35—C36	0.0 (5)	C2—C1—P2—C7	88.2 (3)
C34—C35—C36—C31	-0.1 (5)	C6—C1—P2—C13	158.0 (2)
C32—C31—C36—C35	-0.1 (4)	C2-C1-P2-C13	-21.0 (3)
P1-C31-C36-C35	179.1 (2)	C6—C1—P2—Ag1	31.9 (2)
C42—C37—C38—C39	-0.9 (4)	C2—C1—P2—Ag1	-147.2 (2)
S1—C37—C38—C39	178.2 (2)	C18—C13—P2—C7	156.7 (2)
C37—C38—C39—C40	0.3 (4)	C14—C13—P2—C7	-25.5 (2)
C37—C38—C39—C43	178.1 (3)	C18—C13—P2—C1	-94.4 (2)
C38—C39—C40—C41	-1.0 (4)	C14—C13—P2—C1	83.4 (2)
C43—C39—C40—C41	-178.8 (3)	C18—C13—P2—Ag1	33.2 (2)
C38—C39—C40—C44	177.8 (3)	C14—C13—P2—Ag1	-149.02 (19)
C43—C39—C40—C44	0.0 (5)	P1—Ag1—P2—C7	7.55 (10)
C39—C40—C41—C42	2.5 (4)	O1W—Ag1—P2—C7	-117.92 (11)
C44—C40—C41—C42	-176.3 (3)	N1—Ag1—P2—C7	151.22 (10)
C38—C37—C42—C41	2.2 (3)	P1—Ag1—P2—C1	-112.49 (9)
S1—C37—C42—C41	-176.85 (19)	O1W—Ag1—P2—C1	122.03 (11)
C38—C37—C42—N1	-173.3 (2)	N1—Ag1—P2—C1	31.18 (11)
S1—C37—C42—N1	7.6 (3)	P1—Ag1—P2—C13	126.46 (9)
C40—C41—C42—C37	-3.1 (4)	O1W—Ag1—P2—C13	0.98 (11)
C40—C41—C42—N1	172.7 (2)	N1—Ag1—P2—C13	-89.88 (11)
C37—C42—N1—Ag1	101.6 (2)		

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
O1W—H1B···O2 ⁱ	0.83 (3)	1.97 (3)	2.797 (3)	173 (3)	
O1W—H1A···O3	0.89 (3)	2.10 (3)	2.825 (4)	137 (3)	
N1—H1C···O1 ⁱⁱ	0.92 (3)	2.09 (3)	2.972 (3)	159 (2)	
N1—H1D···O3	0.83 (3)	2.26 (3)	2.875 (3)	131 (3)	
Symmetry codes: (i) x , $-y+3/2$, $z-1/2$; (ii) x , $-y+3/2$, $z+1/2$.					

Fig. 1

Fig. 2

